Decrypting classical cipher text using Markov chain Monte Carlo
نویسندگان
چکیده
We investigate the use of Markov Chain Monte Carlo (MCMC) methods to attack classical ciphers. MCMC has previously been used to break simple substitution ciphers. Here, we extend this approach to transposition ciphers and to substitution-plus-transposition ciphers. Our algorithms run quickly and perform fairly well even for key lengths as high as 40.
منابع مشابه
Coupling control variates for Markov chain Monte Carlo
We show that Markov couplings can be used to improve the accuracy of Markov chain Monte Carlo calculations in some situations where the steady-state probability distribution is not explicitly known. The technique generalizes the notion of control variates from classical Monte Carlo integration. We illustrate it using two models of nonequilibrium transport.
متن کاملDefense Against Secondary User Emulation Attack in Cognitive Radio Networks Using MC- MC Method
Cryptography is the process of transforming an intelligible message into one that's unintelligible and then re transforming that message back to its original form. This transformation along cryptography is done by using an algorithm. In this we propose a reliable Advanced Encryption Standard algorithm for the process of encryption and decryption. The AES (Advanced Encryption Standard) algorithm...
متن کاملggmcmc: Analysis of MCMC Samples and Bayesian Inference
ggmcmc is an R package for analyzing Markov chain Monte Carlo simulations from Bayesian inference. By using a well known example of hierarchical/multilevel modeling, the article reviews the potential uses and options of the package, ranging from classical convergence tests to caterpillar plots or posterior predictive checks. This R vignette is based on the article published at the Journal of St...
متن کاملBayesian model selection in ARFIMA models
Keywords: Bayesian model selection Reversible jump Markov chain Monte Carlo Autoregressive fractional integrated moving average models Long memory processes a b s t r a c t Various model selection criteria such as Akaike information criterion (AIC; Akaike, 1973), Bayesian information criterion (BIC; Akaike, 1979) and Hannan–Quinn criterion (HQC; Hannan, 1980) are used for model specification in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2012